11,199 research outputs found

    Large amplitude oscillations in prominences

    Get PDF
    Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small amplitude oscillations” (2–3 km s−1), which are quite common, and “large-amplitude oscillations” (>20 km s−1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fastmode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology

    The Kandhkelgaon Story: a bold bid by women in Kandhkelgaon Village, Saintala Block, Bolangir District, to break out of their poverty trap

    Get PDF
    One third of the people on earth who are described as living in absolute poverty are found today in India. “These people,” says Mr B K Satpathy, “are caught in a poverty trap’.” “Poverty trap?” we ask. “These are creative weavers; their cloth has a distinctive style, but those who supply their thread also take away and sell the cloth, paying just a small labor cost for each saree. If they are skilled and work hard this amounts to only 25-30 rupees (60-70 US cents) per day.” Under this arrangement, weaving does not provide enough to live on, and people are seeking ways to escape their entrapment in poverty. (Pdf contains 6 pages)

    Large amplitude oscillation of an erupting filament as seen in EUV, H-alpha and microwave observations

    Get PDF
    We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi (Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (≈1 km s−1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 km s−1 and 15 000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated

    Unparticle physics in diphoton production at the CERN LHC

    Full text link
    We have considered the di-photon production with unparticle at LHC. The contributions of spin-0 and spin-2 unparticle to the di-photon production are studied in the invariant mass and other kinematical distributions, along with their dependencies on the model dependent parameters. The signal corresponding to the unparticle is significant for moderate coupling constant values.Comment: 17 pages, 15 eps figure

    Determination of tissue-level changes in tumors that are indicative of metastasis using optical spectroscopy

    Get PDF
    Breast cancer, accounting for 12% of all new cancer cases, is one of the leading causes of death in women worldwide. Although patient survival has improved over the years, metastatic spread to other organ sites and not due to the primary tumor is the most common form of tumor recurrence, accounting for 90% deaths. Hypoxia is a common hallmark of solid tumors and is linked with metastasis, therapeutic resistance, and poor patient survival. Defined as a state of decreased oxygen availability, cells under hypoxia have an increased rate of genetic mutation, local invasion, and resistance to treatment such as radiation and chemotherapy. Previous studies have explored the connection between breast cancer receptor status to the eventual metastatic nature of a tumor; however, the functional characteristics of these tumors remain in question. In this study, diffuse reflectance spectroscopy (DRS) was used to evaluate functional changes in tumor xenografts originated from two breast cancer cell lines with variable metastatic potential. The murine mammary cell lines 4T1 and 67NR were injected into the right flanks of mice to grow tumor xenografts. Optical data from these tumor bearing animals was collected and using an empirical model, vascular oxygen saturation (SO2) and total hemoglobin concentration (cHb) was determined. Results indicated constant hemoglobin content in both cell lines across all time points of measurements and upward of vascular oxygen saturation in both metastatic and nonmetastatic tumors. Overall, this pilot study could aid in the understanding of the role that hypoxia has on breast tumors at a fundamental level and open the door for future studies in answering questions pertaining to specific pathways/tumor microenvironment that occur in response to such conditions both in vitro and in vivo
    corecore